8 класс. Геометрия. Четырехугольники. Параллелограмм.

8 класс. Геометрия. Четырехугольники. Параллелограмм.

Ломаной называется фигура, которая состоит из ...

Комментарии преподавателя

Мно­го­уголь­ни­ки

 1. Понятие «многоугольник»

В курсе гео­мет­рии мы изу­ча­ем свой­ства гео­мет­ри­че­ских фигур и уже рас­смот­ре­ли про­стей­шие из них: тре­уголь­ни­ки и окруж­но­сти. При этом мы об­суж­да­ли и кон­крет­ные част­ные слу­чаи этих фигур, такие как пря­мо­уголь­ные, рав­но­бед­рен­ные и пра­виль­ные тре­уголь­ни­ки. Те­перь при­шло время по­го­во­рить о более общих и слож­ных фи­гу­рах – мно­го­уголь­ни­ках.

С част­ным слу­ча­ем мно­го­уголь­ни­ков мы уже зна­ко­мы – это тре­уголь­ник (см. Рис. 1).

Рис. 1. Тре­уголь­ник

В самом на­зва­нии уже под­чер­ки­ва­ет­ся, что это фи­гу­ра, у ко­то­рой три угла. Сле­до­ва­тель­но, в мно­го­уголь­ни­ке их может быть много, т.е. боль­ше, чем три. На­при­мер, изоб­ра­зим пя­ти­уголь­ник (см. Рис. 2), т.е. фи­гу­ру с пятью уг­ла­ми.

Рис. 2. Пя­ти­уголь­ник. Вы­пук­лый мно­го­уголь­ник

Опре­де­ле­ние.Мно­го­уголь­ник – фи­гу­ра, со­сто­я­щая из несколь­ких точек (боль­ше двух) и со­от­вет­ству­ю­ще­го ко­ли­че­ства от­рез­ков, ко­то­рые их по­сле­до­ва­тель­но со­еди­ня­ют. Эти точки на­зы­ва­ют­ся вер­ши­на­ми мно­го­уголь­ни­ка, а от­рез­ки – сто­ро­на­ми. При этом ни­ка­кие две смеж­ные сто­ро­ны не лежат на одной пря­мой и ни­ка­кие две несмеж­ные сто­ро­ны не пе­ре­се­ка­ют­ся.

Опре­де­ле­ние.Пра­виль­ный мно­го­уголь­ник – это вы­пук­лый мно­го­уголь­ник, у ко­то­ро­го все сто­ро­ны и углы равны.

Любой мно­го­уголь­ник раз­де­ля­ет плос­кость на две об­ла­сти: внут­рен­нюю и внеш­нюю. Внут­рен­нюю об­ласть также от­но­сят кмно­го­уголь­ни­ку.

Иными сло­ва­ми, на­при­мер, когда го­во­рят о пя­ти­уголь­ни­ке , имеют в виду и всю его внут­рен­нюю об­ласть, и гра­ни­цу. А ко внут­рен­ней об­ла­сти от­но­сят­ся и все точки, ко­то­рые лежат внут­ри мно­го­уголь­ни­ка, т.е. точка  тоже от­но­сит­ся к пя­ти­уголь­ни­ку (см. Рис. 2).

Мно­го­уголь­ни­ки еще ино­гда на­зы­ва­ют n-уголь­ни­ка­ми, чтобы под­черк­нуть, что рас­смат­ри­ва­ет­ся общий слу­чай на­ли­чия ка­ко­го-то неиз­вест­но­го ко­ли­че­ства углов (n штук).

Опре­де­ле­ние. Пе­ри­метр мно­го­уголь­ни­ка – сумма длин сто­рон мно­го­уголь­ни­ка.

Те­перь надо по­зна­ко­мить­ся с ви­да­ми мно­го­уголь­ни­ков. Они де­лят­ся на вы­пук­лые и невы­пук­лые. На­при­мер, мно­го­уголь­ник, изоб­ра­жен­ный на Рис. 2, яв­ля­ет­ся вы­пук­лым, а на Рис. 3 невы­пук­лым.

Рис. 3. Невы­пук­лый мно­го­уголь­ник

 2. Выпуклые и невыпуклые многоугольники

Опре­де­ле­ние 1. Мно­го­уголь­ник на­зы­ва­ет­ся вы­пук­лым, если при про­ве­де­нии пря­мой через любую из его сто­рон весь мно­го­уголь­ник лежит толь­ко по одну сто­ро­ну от этой пря­мой. Невы­пук­лы­ми яв­ля­ют­ся все осталь­ные мно­го­уголь­ни­ки.

Легко пред­ста­вить, что при про­дле­нии любой сто­ро­ны пя­ти­уголь­ни­ка на Рис. 2 он весь ока­жет­ся по одну сто­ро­ну от этой пря­мой, т.е. он вы­пук­лый. А вот при про­ве­де­нии пря­мой через  в че­ты­рех­уголь­ни­ке на Рис. 3 мы уже видим, что она раз­де­ля­ет его на две части, т.е. он невы­пук­лый.

Но су­ще­ству­ет и дру­гое опре­де­ле­ние вы­пук­ло­сти мно­го­уголь­ни­ка.

Опре­де­ле­ние 2. Мно­го­уголь­ник на­зы­ва­ет­ся вы­пук­лым, если при вы­бо­ре любых двух его внут­рен­них точек и при со­еди­не­нии их от­рез­ком все точки от­рез­ка яв­ля­ют­ся также внут­рен­ни­ми точ­ка­ми мно­го­уголь­ни­ка.

Де­мон­стра­цию ис­поль­зо­ва­ния этого опре­де­ле­ния можно уви­деть на при­ме­ре по­стро­е­ния от­рез­ков  на Рис. 2 и 3.

Опре­де­ле­ние. Диа­го­на­лью мно­го­уголь­ни­ка на­зы­ва­ет­ся любой от­ре­зок, со­еди­ня­ю­щий две не со­сед­ние его вер­ши­ны.

 3. Теорема о сумме внутренних углов выпуклого n-угольника

Для опи­са­ния свойств мно­го­уголь­ни­ков су­ще­ству­ют две важ­ней­шие тео­ре­мы об их углах: тео­ре­ма о сумме внут­рен­них углов вы­пук­ло­го мно­го­уголь­ни­ка и тео­ре­ма о сумме внеш­них углов вы­пук­ло­го мно­го­уголь­ни­ка. Рас­смот­рим их.

Тео­ре­ма. О сумме внут­рен­них углов вы­пук­ло­го мно­го­уголь­ни­ка (n-уголь­ни­ка).

, где  – ко­ли­че­ство его углов (сто­рон).

До­ка­за­тель­ство 1. Изоб­ра­зим на Рис. 4 вы­пук­лый n-уголь­ник.

Рис. 4. Вы­пук­лый n-уголь­ник

Из вер­ши­ны  про­ве­дем все воз­мож­ные диа­го­на­ли. Они делят n-уголь­ник на  тре­уголь­ни­ка, т.к. каж­дая из сто­рон мно­го­уголь­ни­ка об­ра­зу­ет тре­уголь­ник, кроме сто­рон, при­ле­жа­щих к вер­шине . Легко ви­деть по ри­сун­ку, что сумма углов всех этих тре­уголь­ни­ков как раз будет равна сумме внут­рен­них углов n-уголь­ни­ка. По­сколь­ку сумма углов лю­бо­го тре­уголь­ни­ка – , то сумма внут­рен­них углов n-уголь­ни­ка:

, что и тре­бо­ва­лось до­ка­зать.

До­ка­за­тель­ство 2. Воз­мож­но и дру­гое до­ка­за­тель­ство этой тео­ре­мы. Изоб­ра­зим ана­ло­гич­ный n-уголь­ник на Рис. 5 и со­еди­ним любую его внут­рен­нюю точку со всеми вер­ши­на­ми.

Рис. 5.

Мы по­лу­чи­ли раз­би­е­ние n-уголь­ни­ка на n тре­уголь­ни­ков (сколь­ко сто­рон, столь­ко и тре­уголь­ни­ков). Сумма всех их углов равна сумме внут­рен­них углов мно­го­уголь­ни­ка и сумме углов при внут­рен­ней точке, а это угол  . Имеем:

, что и тре­бо­ва­лось до­ка­зать.

До­ка­за­но.

По до­ка­зан­ной тео­ре­ме видно, что сумма углов n-уголь­ни­ка за­ви­сит от ко­ли­че­ства его сто­рон (от n). На­при­мер, в тре­уголь­ни­ке , а сумма углов . В че­ты­рех­уголь­ни­ке , а сумма углов –  и т.д.

 4. Теорема о сумме внешних углов выпуклого n-угольника

Тео­ре­ма. О сумме внеш­них углов вы­пук­ло­го мно­го­уголь­ни­ка (n-уголь­ни­ка).

, где  – ко­ли­че­ство его углов (сто­рон), а , …,  – внеш­ние углы.

До­ка­за­тель­ство. Изоб­ра­зим вы­пук­лый n-уголь­ник на Рис. 6 и обо­зна­чим его внут­рен­ние и внеш­ние углы.

Рис. 6. Вы­пук­лый n-уголь­ник с обо­зна­чен­ны­ми внеш­ни­ми уг­ла­ми

Т.к. внеш­ний угол свя­зан со внут­рен­ним как смеж­ные, то  и ана­ло­гич­но для осталь­ных внеш­них углов. Тогда:

.

В ходе пре­об­ра­зо­ва­ний мы вос­поль­зо­ва­лись уже до­ка­зан­ной тео­ре­мой о сумме внут­рен­них углов n-уголь­ни­ка .

До­ка­за­но.

Из до­ка­зан­ной тео­ре­мы сле­ду­ет ин­те­рес­ный факт, что сумма внеш­них углов вы­пук­ло­го n-уголь­ни­ка равна  от ко­ли­че­ства его углов (сто­рон). Кста­ти, в от­ли­чие от суммы внут­рен­них углов.

Далее мы более по­дроб­но будем ра­бо­тать с част­ным слу­ча­ем мно­го­уголь­ни­ков – че­ты­рех­уголь­ни­ка­ми. На сле­ду­ю­щем уроке мы по­зна­ко­мим­ся с такой фи­гу­рой, как па­рал­ле­ло­грамм, и об­су­дим его свой­ства.

ИСТОЧНИК

http://interneturok.ru/ru/school/geometry/8-klass/chyotyrehugolniki/mnogougolniki

http://www.youtube.com/watch?v=FZQXnOdUeeI

http://www.youtube.com/watch?v=L2tN3-Wrej8

http://interneturok.ru/ru/school/geometry/8-klass/povtorenie/pryamougolnye-treugolniki

http://interneturok.ru/ru/school/geometry/8-klass/povtorenie/treugolniki-2

http://nsportal.ru/shkola/geometriya/library/2013/10/10/mnogougolniki-urok-v-8-klasse

https://im0-tub-ru.yandex.net/i?id=daa2ea7bbc3c92be3a29b22d8106e486&n=33&h=190&w=144

Файлы